Cremona's table of elliptic curves

Curve 12600bw4

12600 = 23 · 32 · 52 · 7



Data for elliptic curve 12600bw4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 12600bw Isogeny class
Conductor 12600 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -3025828748880000000 = -1 · 210 · 38 · 57 · 78 Discriminant
Eigenvalues 2- 3- 5+ 7+ -4  2 -6  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,35925,-83650250] [a1,a2,a3,a4,a6]
Generators [491:7236:1] Generators of the group modulo torsion
j 439608956/259416045 j-invariant
L 4.3164477541536 L(r)(E,1)/r!
Ω 0.11835943600822 Real period
R 4.5586223411179 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 25200bs3 100800ea3 4200k4 2520g4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations