Cremona's table of elliptic curves

Curve 126126by4

126126 = 2 · 32 · 72 · 11 · 13



Data for elliptic curve 126126by4

Field Data Notes
Atkin-Lehner 2+ 3- 7- 11+ 13+ Signs for the Atkin-Lehner involutions
Class 126126by Isogeny class
Conductor 126126 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 662285986362 = 2 · 39 · 76 · 11 · 13 Discriminant
Eigenvalues 2+ 3- -2 7- 11+ 13+  6  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-18162153,29796503211] [a1,a2,a3,a4,a6]
Generators [2463:-1038:1] Generators of the group modulo torsion
j 7725203825376001537/7722 j-invariant
L 3.7241020614142 L(r)(E,1)/r!
Ω 0.40201292511926 Real period
R 2.3159094180853 Regulator
r 1 Rank of the group of rational points
S 0.99999999557245 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 42042dm4 2574j3 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations