Cremona's table of elliptic curves

Curve 127200cd1

127200 = 25 · 3 · 52 · 53



Data for elliptic curve 127200cd1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 53- Signs for the Atkin-Lehner involutions
Class 127200cd Isogeny class
Conductor 127200 Conductor
∏ cp 32 Product of Tamagawa factors cp
deg 344064 Modular degree for the optimal curve
Δ 15800625000000 = 26 · 32 · 510 · 532 Discriminant
Eigenvalues 2- 3+ 5+  0 -4  2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-22158,-1247688] [a1,a2,a3,a4,a6]
Generators [6564:74800:27] Generators of the group modulo torsion
j 1203192139456/15800625 j-invariant
L 4.7274244370874 L(r)(E,1)/r!
Ω 0.39161593802131 Real period
R 6.0357915806004 Regulator
r 1 Rank of the group of rational points
S 1.0000000156558 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 127200di1 25440l1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations