Cremona's table of elliptic curves

Curve 127680ci5

127680 = 26 · 3 · 5 · 7 · 19



Data for elliptic curve 127680ci5

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ 19- Signs for the Atkin-Lehner involutions
Class 127680ci Isogeny class
Conductor 127680 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -1.7896639338016E+19 Discriminant
Eigenvalues 2+ 3- 5+ 7+ -4  2  2 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,356799,186393375] [a1,a2,a3,a4,a6]
Generators [-231:9576:1] Generators of the group modulo torsion
j 19162556947522799/68270261146605 j-invariant
L 7.380946266614 L(r)(E,1)/r!
Ω 0.15500287045676 Real period
R 2.9761328494213 Regulator
r 1 Rank of the group of rational points
S 1.0000000154829 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 127680ds5 1995c6 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations