Cremona's table of elliptic curves

Curve 127680ex2

127680 = 26 · 3 · 5 · 7 · 19



Data for elliptic curve 127680ex2

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ 19+ Signs for the Atkin-Lehner involutions
Class 127680ex Isogeny class
Conductor 127680 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -465776640000 = -1 · 215 · 32 · 54 · 7 · 192 Discriminant
Eigenvalues 2- 3- 5+ 7+  2 -2  0 19+ Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1601,-41601] [a1,a2,a3,a4,a6]
Generators [6123:90800:27] Generators of the group modulo torsion
j -13858588808/14214375 j-invariant
L 7.8683888734097 L(r)(E,1)/r!
Ω 0.36246263558989 Real period
R 5.4270344680211 Regulator
r 1 Rank of the group of rational points
S 1.0000000008318 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 127680ec2 63840bk2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations