Cremona's table of elliptic curves

Curve 127920c1

127920 = 24 · 3 · 5 · 13 · 41



Data for elliptic curve 127920c1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 13- 41- Signs for the Atkin-Lehner involutions
Class 127920c Isogeny class
Conductor 127920 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 453120 Modular degree for the optimal curve
Δ -467707500000000 = -1 · 28 · 33 · 510 · 132 · 41 Discriminant
Eigenvalues 2+ 3+ 5+  0 -3 13-  3  4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-29881,2253925] [a1,a2,a3,a4,a6]
Generators [4932:40625:64] Generators of the group modulo torsion
j -11526133977631744/1826982421875 j-invariant
L 4.8561931592308 L(r)(E,1)/r!
Ω 0.50745820551829 Real period
R 2.3924103962416 Regulator
r 1 Rank of the group of rational points
S 1.0000000026915 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 63960p1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations