Cremona's table of elliptic curves

Curve 128478f1

128478 = 2 · 3 · 72 · 19 · 23



Data for elliptic curve 128478f1

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 19+ 23+ Signs for the Atkin-Lehner involutions
Class 128478f Isogeny class
Conductor 128478 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 249984 Modular degree for the optimal curve
Δ -1670304448512 = -1 · 214 · 32 · 72 · 19 · 233 Discriminant
Eigenvalues 2+ 3+  2 7- -5 -2 -2 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,0,-5569,-173963] [a1,a2,a3,a4,a6]
j -389925044613097/34087845888 j-invariant
L 1.0997987462712 L(r)(E,1)/r!
Ω 0.27494992587497 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 128478bb1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations