Cremona's table of elliptic curves

Curve 128656d1

128656 = 24 · 11 · 17 · 43



Data for elliptic curve 128656d1

Field Data Notes
Atkin-Lehner 2+ 11+ 17- 43- Signs for the Atkin-Lehner involutions
Class 128656d Isogeny class
Conductor 128656 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 2442240 Modular degree for the optimal curve
Δ -1840067821224993536 = -1 · 28 · 115 · 176 · 432 Discriminant
Eigenvalues 2+  3  1  0 11+  4 17-  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,219188,51955148] [a1,a2,a3,a4,a6]
Generators [33843:1293751:27] Generators of the group modulo torsion
j 4549189924073954304/7187764926660131 j-invariant
L 15.540000175411 L(r)(E,1)/r!
Ω 0.17984927472823 Real period
R 7.2004739224442 Regulator
r 1 Rank of the group of rational points
S 1.0000000015185 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 64328f1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations