Cremona's table of elliptic curves

Curve 129200bq1

129200 = 24 · 52 · 17 · 19



Data for elliptic curve 129200bq1

Field Data Notes
Atkin-Lehner 2- 5+ 17+ 19- Signs for the Atkin-Lehner involutions
Class 129200bq Isogeny class
Conductor 129200 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 107520 Modular degree for the optimal curve
Δ -516800000000 = -1 · 212 · 58 · 17 · 19 Discriminant
Eigenvalues 2-  1 5+ -2 -2  2 17+ 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-133,-34637] [a1,a2,a3,a4,a6]
Generators [85566:316675:2197] Generators of the group modulo torsion
j -4096/8075 j-invariant
L 6.4333792418262 L(r)(E,1)/r!
Ω 0.42000042198185 Real period
R 7.6587769537363 Regulator
r 1 Rank of the group of rational points
S 1.0000000212887 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 8075a1 25840be1 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations