Cremona's table of elliptic curves

Curve 129360x1

129360 = 24 · 3 · 5 · 72 · 11



Data for elliptic curve 129360x1

Field Data Notes
Atkin-Lehner 2+ 3+ 5+ 7- 11- Signs for the Atkin-Lehner involutions
Class 129360x Isogeny class
Conductor 129360 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 1419264 Modular degree for the optimal curve
Δ -191760340464000000 = -1 · 210 · 33 · 56 · 79 · 11 Discriminant
Eigenvalues 2+ 3+ 5+ 7- 11-  2 -2  8 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-80376,-22794624] [a1,a2,a3,a4,a6]
Generators [2944060:-58927492:4913] Generators of the group modulo torsion
j -1389715708/4640625 j-invariant
L 5.9054010191936 L(r)(E,1)/r!
Ω 0.13043610290549 Real period
R 11.318570876004 Regulator
r 1 Rank of the group of rational points
S 0.99999998596056 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 64680co1 129360dc1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations