Cremona's table of elliptic curves

Curve 13065l1

13065 = 3 · 5 · 13 · 67



Data for elliptic curve 13065l1

Field Data Notes
Atkin-Lehner 3- 5+ 13+ 67- Signs for the Atkin-Lehner involutions
Class 13065l Isogeny class
Conductor 13065 Conductor
∏ cp 18 Product of Tamagawa factors cp
deg 237600 Modular degree for the optimal curve
Δ 254400944660971875 = 36 · 55 · 135 · 673 Discriminant
Eigenvalues -1 3- 5+  5 -4 13+ -4  3 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-666961,-208298290] [a1,a2,a3,a4,a6]
Generators [-451:1130:1] Generators of the group modulo torsion
j 32811423455170089068689/254400944660971875 j-invariant
L 3.7345914101452 L(r)(E,1)/r!
Ω 0.16713887573363 Real period
R 1.2413467522318 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 39195t1 65325f1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations