Cremona's table of elliptic curves

Curve 13110bh1

13110 = 2 · 3 · 5 · 19 · 23



Data for elliptic curve 13110bh1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19- 23+ Signs for the Atkin-Lehner involutions
Class 13110bh Isogeny class
Conductor 13110 Conductor
∏ cp 248 Product of Tamagawa factors cp
deg 6944000 Modular degree for the optimal curve
Δ -2.0858425277046E+24 Discriminant
Eigenvalues 2- 3- 5+  2  0 -2 -4 19- Hecke eigenvalues for primes up to 20
Equation [1,0,0,-2147482601,38303748741465] [a1,a2,a3,a4,a6]
j -1095248516670909925403006195052049/2085842527704615412039680 j-invariant
L 4.3941272488471 L(r)(E,1)/r!
Ω 0.070873020142695 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 104880bg1 39330ba1 65550k1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations