Cremona's table of elliptic curves

Curve 13200u3

13200 = 24 · 3 · 52 · 11



Data for elliptic curve 13200u3

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 11- Signs for the Atkin-Lehner involutions
Class 13200u Isogeny class
Conductor 13200 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 618750000000000 = 210 · 32 · 514 · 11 Discriminant
Eigenvalues 2+ 3- 5+  0 11-  2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-58008,-5262012] [a1,a2,a3,a4,a6]
Generators [-121:6:1] Generators of the group modulo torsion
j 1349195526724/38671875 j-invariant
L 5.8983599518127 L(r)(E,1)/r!
Ω 0.30816817023606 Real period
R 4.7850171768993 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6600a4 52800dz3 39600e3 2640f3 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations