Cremona's table of elliptic curves

Curve 13520b1

13520 = 24 · 5 · 132



Data for elliptic curve 13520b1

Field Data Notes
Atkin-Lehner 2+ 5+ 13+ Signs for the Atkin-Lehner involutions
Class 13520b Isogeny class
Conductor 13520 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 29952 Modular degree for the optimal curve
Δ 326292288400 = 24 · 52 · 138 Discriminant
Eigenvalues 2+  1 5+  3 -1 13+  1  1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-71036,-7310965] [a1,a2,a3,a4,a6]
Generators [1577:61685:1] Generators of the group modulo torsion
j 3037375744/25 j-invariant
L 5.6707729183771 L(r)(E,1)/r!
Ω 0.29243519206106 Real period
R 3.2319257236734 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6760b1 54080cz1 121680bn1 67600j1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations