Cremona's table of elliptic curves

Curve 13566b1

13566 = 2 · 3 · 7 · 17 · 19



Data for elliptic curve 13566b1

Field Data Notes
Atkin-Lehner 2+ 3+ 7+ 17+ 19+ Signs for the Atkin-Lehner involutions
Class 13566b Isogeny class
Conductor 13566 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 47520 Modular degree for the optimal curve
Δ -6178573707264 = -1 · 211 · 35 · 7 · 173 · 192 Discriminant
Eigenvalues 2+ 3+  3 7+  5 -1 17+ 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,0,4494,-27468] [a1,a2,a3,a4,a6]
Generators [313:5515:1] Generators of the group modulo torsion
j 10033949469247703/6178573707264 j-invariant
L 3.8196659015746 L(r)(E,1)/r!
Ω 0.43617167879516 Real period
R 4.3786266821882 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 108528bn1 40698bi1 94962ba1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations