Cremona's table of elliptic curves

Curve 13650z5

13650 = 2 · 3 · 52 · 7 · 13



Data for elliptic curve 13650z5

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ 13+ Signs for the Atkin-Lehner involutions
Class 13650z Isogeny class
Conductor 13650 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 2.0307540893555E+20 Discriminant
Eigenvalues 2+ 3- 5+ 7+ -4 13+  6 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-11560251,-15114027602] [a1,a2,a3,a4,a6]
j 10934663514379917006241/12996826171875000 j-invariant
L 1.3101128944732 L(r)(E,1)/r!
Ω 0.081882055904575 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 109200ds6 40950ds6 2730x5 95550bt6 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations