Cremona's table of elliptic curves

Curve 13760f3

13760 = 26 · 5 · 43



Data for elliptic curve 13760f3

Field Data Notes
Atkin-Lehner 2+ 5- 43+ Signs for the Atkin-Lehner involutions
Class 13760f Isogeny class
Conductor 13760 Conductor
∏ cp 36 Product of Tamagawa factors cp
Δ -44032000000000 = -1 · 219 · 59 · 43 Discriminant
Eigenvalues 2+  2 5- -1  6 -5 -6  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-360065,-83041663] [a1,a2,a3,a4,a6]
j -19693718244927649/167968750 j-invariant
L 3.5081367165319 L(r)(E,1)/r!
Ω 0.097448242125886 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 13760t3 430c3 123840bj3 68800bk3 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations