Cremona's table of elliptic curves

Curve 13776p1

13776 = 24 · 3 · 7 · 41



Data for elliptic curve 13776p1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 41+ Signs for the Atkin-Lehner involutions
Class 13776p Isogeny class
Conductor 13776 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 27648 Modular degree for the optimal curve
Δ -19110977077248 = -1 · 224 · 34 · 73 · 41 Discriminant
Eigenvalues 2- 3- -2 7+  4  2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,1616,-208300] [a1,a2,a3,a4,a6]
Generators [52:138:1] Generators of the group modulo torsion
j 113872553423/4665765888 j-invariant
L 5.1304728146585 L(r)(E,1)/r!
Ω 0.32975168668188 Real period
R 3.8896486522053 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 1722m1 55104bs1 41328bn1 96432br1 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations