Cremona's table of elliptic curves

Curve 1380d1

1380 = 22 · 3 · 5 · 23



Data for elliptic curve 1380d1

Field Data Notes
Atkin-Lehner 2- 3- 5- 23+ Signs for the Atkin-Lehner involutions
Class 1380d Isogeny class
Conductor 1380 Conductor
∏ cp 54 Product of Tamagawa factors cp
deg 504 Modular degree for the optimal curve
Δ 155250000 = 24 · 33 · 56 · 23 Discriminant
Eigenvalues 2- 3- 5- -4  0  2  6  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-165,-612] [a1,a2,a3,a4,a6]
j 31238127616/9703125 j-invariant
L 2.0456487604425 L(r)(E,1)/r!
Ω 1.363765840295 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 6 Number of elements in the torsion subgroup
Twists 5520v1 22080f1 4140e1 6900e1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations