Cremona's table of elliptic curves

Curve 13923f1

13923 = 32 · 7 · 13 · 17



Data for elliptic curve 13923f1

Field Data Notes
Atkin-Lehner 3- 7+ 13- 17+ Signs for the Atkin-Lehner involutions
Class 13923f Isogeny class
Conductor 13923 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 12288 Modular degree for the optimal curve
Δ 57515913 = 37 · 7 · 13 · 172 Discriminant
Eigenvalues  1 3-  2 7+  4 13- 17+ -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-14796,-689045] [a1,a2,a3,a4,a6]
Generators [-381429155360:191959568443:5451776000] Generators of the group modulo torsion
j 491411892194497/78897 j-invariant
L 6.4697667956874 L(r)(E,1)/r!
Ω 0.43287459908477 Real period
R 14.946053220416 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 4641b1 97461l1 Quadratic twists by: -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations