Cremona's table of elliptic curves

Curve 13944j1

13944 = 23 · 3 · 7 · 83



Data for elliptic curve 13944j1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 83+ Signs for the Atkin-Lehner involutions
Class 13944j Isogeny class
Conductor 13944 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 8960 Modular degree for the optimal curve
Δ -9107997696 = -1 · 210 · 37 · 72 · 83 Discriminant
Eigenvalues 2- 3+  1 7-  1  0 -2  7 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,240,4284] [a1,a2,a3,a4,a6]
Generators [-10:28:1] Generators of the group modulo torsion
j 1486779836/8894529 j-invariant
L 4.5921884686217 L(r)(E,1)/r!
Ω 0.93991984798904 Real period
R 1.2214308694637 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 27888h1 111552bt1 41832j1 97608w1 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations