Cremona's table of elliptic curves

Curve 13965b3

13965 = 3 · 5 · 72 · 19



Data for elliptic curve 13965b3

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 19- Signs for the Atkin-Lehner involutions
Class 13965b Isogeny class
Conductor 13965 Conductor
∏ cp 24 Product of Tamagawa factors cp
Δ 5.38555235333E+25 Discriminant
Eigenvalues  1 3+ 5+ 7-  0 -6 -2 19- Hecke eigenvalues for primes up to 20
Equation [1,1,0,-125506273,-410194142042] [a1,a2,a3,a4,a6]
Generators [-302245533292:-16116417863575:45118016] Generators of the group modulo torsion
j 1858368248693819973741961/457764396920504296875 j-invariant
L 3.7220401126376 L(r)(E,1)/r!
Ω 0.045917929178563 Real period
R 13.509755990097 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 41895bw4 69825bx4 1995g3 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations