Cremona's table of elliptic curves

Curve 14144u1

14144 = 26 · 13 · 17



Data for elliptic curve 14144u1

Field Data Notes
Atkin-Lehner 2- 13- 17+ Signs for the Atkin-Lehner involutions
Class 14144u Isogeny class
Conductor 14144 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 9216 Modular degree for the optimal curve
Δ 3012558848 = 220 · 132 · 17 Discriminant
Eigenvalues 2-  2  2 -2  4 13- 17+ -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-577,4833] [a1,a2,a3,a4,a6]
Generators [-9:96:1] Generators of the group modulo torsion
j 81182737/11492 j-invariant
L 7.4562323713636 L(r)(E,1)/r!
Ω 1.3685730944629 Real period
R 2.7240899304285 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 14144h1 3536g1 127296du1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations