Cremona's table of elliptic curves

Curve 14525d1

14525 = 52 · 7 · 83



Data for elliptic curve 14525d1

Field Data Notes
Atkin-Lehner 5+ 7+ 83- Signs for the Atkin-Lehner involutions
Class 14525d Isogeny class
Conductor 14525 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 55680 Modular degree for the optimal curve
Δ -2354638671875 = -1 · 511 · 7 · 832 Discriminant
Eigenvalues  2 -1 5+ 7+ -3  1 -7  8 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,-25408,-1552157] [a1,a2,a3,a4,a6]
j -116100000354304/150696875 j-invariant
L 1.5124523691449 L(r)(E,1)/r!
Ω 0.18905654614311 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 2905b1 101675k1 Quadratic twists by: 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations