Cremona's table of elliptic curves

Curve 1479g1

1479 = 3 · 17 · 29



Data for elliptic curve 1479g1

Field Data Notes
Atkin-Lehner 3- 17- 29+ Signs for the Atkin-Lehner involutions
Class 1479g Isogeny class
Conductor 1479 Conductor
∏ cp 26 Product of Tamagawa factors cp
deg 2080 Modular degree for the optimal curve
Δ -22794035931 = -1 · 313 · 17 · 292 Discriminant
Eigenvalues -2 3- -3 -2  5 -1 17- -7 Hecke eigenvalues for primes up to 20
Equation [0,1,1,-272,-7558] [a1,a2,a3,a4,a6]
Generators [112:-1175:1] Generators of the group modulo torsion
j -2233706549248/22794035931 j-invariant
L 1.4461932974836 L(r)(E,1)/r!
Ω 0.5107729832223 Real period
R 0.10889929765486 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 23664m1 94656q1 4437i1 36975f1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations