Cremona's table of elliptic curves

Curve 15162bc1

15162 = 2 · 3 · 7 · 192



Data for elliptic curve 15162bc1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 19+ Signs for the Atkin-Lehner involutions
Class 15162bc Isogeny class
Conductor 15162 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 65664 Modular degree for the optimal curve
Δ -8559715772664 = -1 · 23 · 32 · 7 · 198 Discriminant
Eigenvalues 2- 3- -1 7+  0 -1 -4 19+ Hecke eigenvalues for primes up to 20
Equation [1,0,0,-64446,-6304068] [a1,a2,a3,a4,a6]
Generators [10202:1025042:1] Generators of the group modulo torsion
j -1742943169/504 j-invariant
L 7.8946538934776 L(r)(E,1)/r!
Ω 0.14981765620921 Real period
R 8.7825139052739 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 121296cb1 45486f1 106134bu1 15162e1 Quadratic twists by: -4 -3 -7 -19


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations