Cremona's table of elliptic curves

Curve 15840v4

15840 = 25 · 32 · 5 · 11



Data for elliptic curve 15840v4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 11+ Signs for the Atkin-Lehner involutions
Class 15840v Isogeny class
Conductor 15840 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ -81970859520 = -1 · 29 · 37 · 5 · 114 Discriminant
Eigenvalues 2- 3- 5+ -4 11+  2  2  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,1077,-2162] [a1,a2,a3,a4,a6]
Generators [38:306:1] Generators of the group modulo torsion
j 370146232/219615 j-invariant
L 3.7765223729032 L(r)(E,1)/r!
Ω 0.63272656412499 Real period
R 2.9843241828529 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 15840z4 31680ef3 5280i4 79200bd2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations