Cremona's table of elliptic curves

Curve 15870bl1

15870 = 2 · 3 · 5 · 232



Data for elliptic curve 15870bl1

Field Data Notes
Atkin-Lehner 2- 3- 5- 23- Signs for the Atkin-Lehner involutions
Class 15870bl Isogeny class
Conductor 15870 Conductor
∏ cp 108 Product of Tamagawa factors cp
deg 13824 Modular degree for the optimal curve
Δ -4570560000 = -1 · 29 · 33 · 54 · 232 Discriminant
Eigenvalues 2- 3- 5-  1  3 -4 -6 -8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,265,-2775] [a1,a2,a3,a4,a6]
Generators [10:25:1] Generators of the group modulo torsion
j 3889584671/8640000 j-invariant
L 9.5942969839195 L(r)(E,1)/r!
Ω 0.71390353752928 Real period
R 0.12443709621035 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 126960bv1 47610p1 79350h1 15870bh1 Quadratic twists by: -4 -3 5 -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations