Cremona's table of elliptic curves

Curve 16368z1

16368 = 24 · 3 · 11 · 31



Data for elliptic curve 16368z1

Field Data Notes
Atkin-Lehner 2- 3- 11- 31- Signs for the Atkin-Lehner involutions
Class 16368z Isogeny class
Conductor 16368 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 15360 Modular degree for the optimal curve
Δ 168345796608 = 216 · 35 · 11 · 312 Discriminant
Eigenvalues 2- 3-  2 -2 11-  4  2  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1552,12308] [a1,a2,a3,a4,a6]
Generators [-28:186:1] Generators of the group modulo torsion
j 100999381393/41100048 j-invariant
L 6.7923306108527 L(r)(E,1)/r!
Ω 0.92382742919861 Real period
R 0.73523803214468 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 2046f1 65472bp1 49104bk1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations