Cremona's table of elliptic curves

Curve 17100a1

17100 = 22 · 32 · 52 · 19



Data for elliptic curve 17100a1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 19- Signs for the Atkin-Lehner involutions
Class 17100a Isogeny class
Conductor 17100 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 77760 Modular degree for the optimal curve
Δ 74077200 = 24 · 33 · 52 · 193 Discriminant
Eigenvalues 2- 3+ 5+  1  0 -2  0 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-1620465,793976405] [a1,a2,a3,a4,a6]
Generators [724:513:1] Generators of the group modulo torsion
j 43573146510889416960/6859 j-invariant
L 5.1646841642761 L(r)(E,1)/r!
Ω 0.77493245565665 Real period
R 1.1107815755589 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 68400dd1 17100b2 17100g1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations