Cremona's table of elliptic curves

Curve 17100c1

17100 = 22 · 32 · 52 · 19



Data for elliptic curve 17100c1

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 19- Signs for the Atkin-Lehner involutions
Class 17100c Isogeny class
Conductor 17100 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 5184 Modular degree for the optimal curve
Δ 205200 = 24 · 33 · 52 · 19 Discriminant
Eigenvalues 2- 3+ 5+  1  6  4 -6 19- Hecke eigenvalues for primes up to 20
Equation [0,0,0,-645,6305] [a1,a2,a3,a4,a6]
Generators [16:9:1] Generators of the group modulo torsion
j 2747761920/19 j-invariant
L 5.7580860558079 L(r)(E,1)/r!
Ω 2.8330071319956 Real period
R 1.0162498341033 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 68400dg1 17100d2 17100i1 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations