Cremona's table of elliptic curves

Curve 17325l1

17325 = 32 · 52 · 7 · 11



Data for elliptic curve 17325l1

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 11- Signs for the Atkin-Lehner involutions
Class 17325l Isogeny class
Conductor 17325 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 25920 Modular degree for the optimal curve
Δ 26860517578125 = 36 · 510 · 73 · 11 Discriminant
Eigenvalues  0 3- 5+ 7+ 11-  1  3 -1 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-7500,-17969] [a1,a2,a3,a4,a6]
Generators [-29:418:1] Generators of the group modulo torsion
j 6553600/3773 j-invariant
L 3.8912468765683 L(r)(E,1)/r!
Ω 0.55836698491835 Real period
R 3.4844886800903 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 1925b1 17325bt1 121275dr1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations