Cremona's table of elliptic curves

Curve 17355l1

17355 = 3 · 5 · 13 · 89



Data for elliptic curve 17355l1

Field Data Notes
Atkin-Lehner 3- 5- 13+ 89+ Signs for the Atkin-Lehner involutions
Class 17355l Isogeny class
Conductor 17355 Conductor
∏ cp 36 Product of Tamagawa factors cp
deg 14400 Modular degree for the optimal curve
Δ 76859654625 = 312 · 53 · 13 · 89 Discriminant
Eigenvalues -1 3- 5-  2  2 13+ -2  4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-2770,54275] [a1,a2,a3,a4,a6]
Generators [-55:230:1] Generators of the group modulo torsion
j 2350567993819681/76859654625 j-invariant
L 4.5406320658919 L(r)(E,1)/r!
Ω 1.0813020877763 Real period
R 0.46658068979179 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 52065g1 86775f1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations