Cremona's table of elliptic curves

Curve 1800j1

1800 = 23 · 32 · 52



Data for elliptic curve 1800j1

Field Data Notes
Atkin-Lehner 2+ 3- 5- Signs for the Atkin-Lehner involutions
Class 1800j Isogeny class
Conductor 1800 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 3840 Modular degree for the optimal curve
Δ -39366000000000 = -1 · 210 · 39 · 59 Discriminant
Eigenvalues 2+ 3- 5- -2 -2  2 -6  8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,7125,193750] [a1,a2,a3,a4,a6]
Generators [-1:432:1] Generators of the group modulo torsion
j 27436/27 j-invariant
L 2.8170963818943 L(r)(E,1)/r!
Ω 0.42544038808249 Real period
R 1.6554001810872 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 3600r1 14400cf1 600h1 1800v1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations