Cremona's table of elliptic curves

Curve 18060c2

18060 = 22 · 3 · 5 · 7 · 43



Data for elliptic curve 18060c2

Field Data Notes
Atkin-Lehner 2- 3+ 5- 7+ 43+ Signs for the Atkin-Lehner involutions
Class 18060c Isogeny class
Conductor 18060 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ 3131170560 = 28 · 33 · 5 · 72 · 432 Discriminant
Eigenvalues 2- 3+ 5- 7+ -4 -4  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-820,-8360] [a1,a2,a3,a4,a6]
Generators [-134:159:8] Generators of the group modulo torsion
j 238481570896/12231135 j-invariant
L 3.7744447203373 L(r)(E,1)/r!
Ω 0.89491963030132 Real period
R 4.2176354082952 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 72240dg2 54180g2 90300bq2 126420bj2 Quadratic twists by: -4 -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations