Cremona's table of elliptic curves

Curve 1806j1

1806 = 2 · 3 · 7 · 43



Data for elliptic curve 1806j1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 43+ Signs for the Atkin-Lehner involutions
Class 1806j Isogeny class
Conductor 1806 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 576 Modular degree for the optimal curve
Δ -91325808 = -1 · 24 · 32 · 73 · 432 Discriminant
Eigenvalues 2- 3+  0 7- -4 -2 -2 -8 Hecke eigenvalues for primes up to 20
Equation [1,1,1,7,-457] [a1,a2,a3,a4,a6]
Generators [9:16:1] Generators of the group modulo torsion
j 37595375/91325808 j-invariant
L 3.6129999234499 L(r)(E,1)/r!
Ω 0.88469072856529 Real period
R 0.34032607919655 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 14448x1 57792bq1 5418g1 45150z1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations