Cremona's table of elliptic curves

Curve 18270br1

18270 = 2 · 32 · 5 · 7 · 29



Data for elliptic curve 18270br1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7- 29- Signs for the Atkin-Lehner involutions
Class 18270br Isogeny class
Conductor 18270 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 10368 Modular degree for the optimal curve
Δ -998912250 = -1 · 2 · 39 · 53 · 7 · 29 Discriminant
Eigenvalues 2- 3- 5+ 7- -3  2 -3 -7 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-68,-1519] [a1,a2,a3,a4,a6]
Generators [126:203:8] Generators of the group modulo torsion
j -47045881/1370250 j-invariant
L 7.1475426731447 L(r)(E,1)/r!
Ω 0.67856152245849 Real period
R 2.6333436381894 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6090p1 91350bm1 127890gi1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations