Cremona's table of elliptic curves

Curve 18270u2

18270 = 2 · 32 · 5 · 7 · 29



Data for elliptic curve 18270u2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 7+ 29+ Signs for the Atkin-Lehner involutions
Class 18270u Isogeny class
Conductor 18270 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -3532864053600 = -1 · 25 · 37 · 52 · 74 · 292 Discriminant
Eigenvalues 2+ 3- 5- 7+ -4  4  6 -6 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,3276,53680] [a1,a2,a3,a4,a6]
Generators [21:352:1] Generators of the group modulo torsion
j 5332775378111/4846178400 j-invariant
L 3.8322792123738 L(r)(E,1)/r!
Ω 0.51623043129638 Real period
R 1.8558956330558 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 6090r2 91350en2 127890bq2 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations