Cremona's table of elliptic curves

Curve 18564l1

18564 = 22 · 3 · 7 · 13 · 17



Data for elliptic curve 18564l1

Field Data Notes
Atkin-Lehner 2- 3- 7+ 13- 17- Signs for the Atkin-Lehner involutions
Class 18564l Isogeny class
Conductor 18564 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 7680 Modular degree for the optimal curve
Δ 16410576 = 24 · 3 · 7 · 132 · 172 Discriminant
Eigenvalues 2- 3-  2 7+  4 13- 17- -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1177,-15940] [a1,a2,a3,a4,a6]
Generators [284268:3570515:1728] Generators of the group modulo torsion
j 11279816900608/1025661 j-invariant
L 7.2585536686995 L(r)(E,1)/r!
Ω 0.81503651099699 Real period
R 8.9058018515275 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 74256cf1 55692s1 129948f1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations