Cremona's table of elliptic curves

Curve 19110cx1

19110 = 2 · 3 · 5 · 72 · 13



Data for elliptic curve 19110cx1

Field Data Notes
Atkin-Lehner 2- 3- 5- 7+ 13+ Signs for the Atkin-Lehner involutions
Class 19110cx Isogeny class
Conductor 19110 Conductor
∏ cp 30 Product of Tamagawa factors cp
deg 776160 Modular degree for the optimal curve
Δ -1.2208479082316E+20 Discriminant
Eigenvalues 2- 3- 5- 7+ -1 13+  3 -6 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-872985,617314725] [a1,a2,a3,a4,a6]
j -12763205672220241/21177624487500 j-invariant
L 5.0000041547865 L(r)(E,1)/r!
Ω 0.16666680515955 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 57330m1 95550e1 19110bs1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations