Cremona's table of elliptic curves

Curve 19734s1

19734 = 2 · 3 · 11 · 13 · 23



Data for elliptic curve 19734s1

Field Data Notes
Atkin-Lehner 2- 3- 11+ 13+ 23+ Signs for the Atkin-Lehner involutions
Class 19734s Isogeny class
Conductor 19734 Conductor
∏ cp 40 Product of Tamagawa factors cp
deg 8960 Modular degree for the optimal curve
Δ -272802816 = -1 · 210 · 34 · 11 · 13 · 23 Discriminant
Eigenvalues 2- 3-  1  1 11+ 13+ -6 -3 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-365,2769] [a1,a2,a3,a4,a6]
Generators [10:7:1] Generators of the group modulo torsion
j -5378691911761/272802816 j-invariant
L 9.9656170081212 L(r)(E,1)/r!
Ω 1.7203774461017 Real period
R 0.1448173049278 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 59202q1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations