Cremona's table of elliptic curves

Curve 1974b1

1974 = 2 · 3 · 7 · 47



Data for elliptic curve 1974b1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 47+ Signs for the Atkin-Lehner involutions
Class 1974b Isogeny class
Conductor 1974 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 256 Modular degree for the optimal curve
Δ -331632 = -1 · 24 · 32 · 72 · 47 Discriminant
Eigenvalues 2+ 3-  0 7-  2 -4 -2 -8 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-1,-28] [a1,a2,a3,a4,a6]
Generators [7:14:1] Generators of the group modulo torsion
j -15625/331632 j-invariant
L 2.6947111239919 L(r)(E,1)/r!
Ω 1.3880153600626 Real period
R 0.97070652152955 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 15792p1 63168q1 5922p1 49350bl1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations