Cremona's table of elliptic curves

Curve 20160dr8

20160 = 26 · 32 · 5 · 7



Data for elliptic curve 20160dr8

Field Data Notes
Atkin-Lehner 2- 3- 5+ 7+ Signs for the Atkin-Lehner involutions
Class 20160dr Isogeny class
Conductor 20160 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -2.592487296E+21 Discriminant
Eigenvalues 2- 3- 5+ 7+  0 -2  6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,419892,-2447480432] [a1,a2,a3,a4,a6]
Generators [2102655732192:-86331513437500:1021147343] Generators of the group modulo torsion
j 42841933504271/13565917968750 j-invariant
L 4.4200854741168 L(r)(E,1)/r!
Ω 0.067715628878077 Real period
R 16.318557278982 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 20160bn8 5040bj8 6720cg8 100800mv7 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations