Cremona's table of elliptic curves

Curve 20202i3

20202 = 2 · 3 · 7 · 13 · 37



Data for elliptic curve 20202i3

Field Data Notes
Atkin-Lehner 2- 3- 7+ 13- 37- Signs for the Atkin-Lehner involutions
Class 20202i Isogeny class
Conductor 20202 Conductor
∏ cp 1536 Product of Tamagawa factors cp
Δ 2.3985013054695E+19 Discriminant
Eigenvalues 2- 3- -2 7+ -4 13-  2 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-1231509,-470399391] [a1,a2,a3,a4,a6]
Generators [-684:7557:1] Generators of the group modulo torsion
j 206555376729055286486737/23985013054695323904 j-invariant
L 7.6409004681224 L(r)(E,1)/r!
Ω 0.14439983470846 Real period
R 0.55119670580166 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 60606l3 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations