Cremona's table of elliptic curves

Curve 20631h1

20631 = 3 · 13 · 232



Data for elliptic curve 20631h1

Field Data Notes
Atkin-Lehner 3- 13- 23- Signs for the Atkin-Lehner involutions
Class 20631h Isogeny class
Conductor 20631 Conductor
∏ cp 160 Product of Tamagawa factors cp
deg 1774080 Modular degree for the optimal curve
Δ -2.0063497913869E+21 Discriminant
Eigenvalues -1 3- -2  4  4 13- -6  8 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-10369469,-13032651912] [a1,a2,a3,a4,a6]
j -832964037319114273/13553130966687 j-invariant
L 1.6810117057685 L(r)(E,1)/r!
Ω 0.042025292644213 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 61893g1 897e1 Quadratic twists by: -3 -23


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations