Cremona's table of elliptic curves

Curve 2070h2

2070 = 2 · 32 · 5 · 23



Data for elliptic curve 2070h2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 23+ Signs for the Atkin-Lehner involutions
Class 2070h Isogeny class
Conductor 2070 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ 5784615000 = 23 · 37 · 54 · 232 Discriminant
Eigenvalues 2+ 3- 5- -2  2 -6  4  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-1044,-12200] [a1,a2,a3,a4,a6]
Generators [-19:32:1] Generators of the group modulo torsion
j 172715635009/7935000 j-invariant
L 2.3137195474262 L(r)(E,1)/r!
Ω 0.84224513177859 Real period
R 0.34338571101923 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 16560ce2 66240bi2 690h2 10350bp2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations