Cremona's table of elliptic curves

Curve 20832bf3

20832 = 25 · 3 · 7 · 31



Data for elliptic curve 20832bf3

Field Data Notes
Atkin-Lehner 2- 3- 7- 31+ Signs for the Atkin-Lehner involutions
Class 20832bf Isogeny class
Conductor 20832 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 40821387264 = 212 · 38 · 72 · 31 Discriminant
Eigenvalues 2- 3- -2 7- -4 -6 -6 -8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-8209,283391] [a1,a2,a3,a4,a6]
Generators [-94:483:1] [-55:756:1] Generators of the group modulo torsion
j 14937827321152/9966159 j-invariant
L 7.7973762864869 L(r)(E,1)/r!
Ω 1.1351441417807 Real period
R 1.7172656756734 Regulator
r 2 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 20832y2 41664ct1 62496p4 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations