Cremona's table of elliptic curves

Curve 21318n3

21318 = 2 · 3 · 11 · 17 · 19



Data for elliptic curve 21318n3

Field Data Notes
Atkin-Lehner 2- 3+ 11- 17+ 19+ Signs for the Atkin-Lehner involutions
Class 21318n Isogeny class
Conductor 21318 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -389238071244 = -1 · 22 · 3 · 114 · 17 · 194 Discriminant
Eigenvalues 2- 3+  2  0 11- -2 17+ 19+ Hecke eigenvalues for primes up to 20
Equation [1,1,1,178,-29929] [a1,a2,a3,a4,a6]
Generators [85:737:1] Generators of the group modulo torsion
j 623492479007/389238071244 j-invariant
L 7.6685279724507 L(r)(E,1)/r!
Ω 0.44388365136078 Real period
R 4.3189966272366 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 63954h3 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations