Cremona's table of elliptic curves

Curve 21483f1

21483 = 32 · 7 · 11 · 31



Data for elliptic curve 21483f1

Field Data Notes
Atkin-Lehner 3+ 7+ 11- 31+ Signs for the Atkin-Lehner involutions
Class 21483f Isogeny class
Conductor 21483 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 3584 Modular degree for the optimal curve
Δ 13985433 = 33 · 72 · 11 · 312 Discriminant
Eigenvalues -1 3+  0 7+ 11- -4 -6  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-65,-72] [a1,a2,a3,a4,a6]
Generators [-6:11:1] [-4:12:1] Generators of the group modulo torsion
j 1108717875/517979 j-invariant
L 4.942348059161 L(r)(E,1)/r!
Ω 1.7612531513074 Real period
R 1.4030771372907 Regulator
r 2 Rank of the group of rational points
S 0.99999999999992 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 21483c1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations