Cremona's table of elliptic curves

Curve 22575n3

22575 = 3 · 52 · 7 · 43



Data for elliptic curve 22575n3

Field Data Notes
Atkin-Lehner 3- 5+ 7- 43+ Signs for the Atkin-Lehner involutions
Class 22575n Isogeny class
Conductor 22575 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 6458759307861328125 = 32 · 522 · 7 · 43 Discriminant
Eigenvalues  1 3- 5+ 7- -4 -6  6  4 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-564651,108211573] [a1,a2,a3,a4,a6]
Generators [7626136266886:-15632306037791367:1815848] Generators of the group modulo torsion
j 1274215504790678689/413360595703125 j-invariant
L 7.1367895299207 L(r)(E,1)/r!
Ω 0.21942957646435 Real period
R 16.262141241201 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 67725w3 4515a4 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations